Какой субстрат дыхания разрушается в первую очередь. Дыхательный коэффициент и субстраты дыхания

Дыхание – это процесс постепенного окисления органических веществ при участии кислорода с образованием воды, углекислого газа и энергии. Оно присуще любому органу, ткани, каждой клетке. Это универсальный процесс, характерный для всех живых организмов. Суммарное уравнение дыхания (В.И. Палладин, 1912 г.): С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 2874 кДж.

Значение дыхания: Дыхание является основным источником энергии (АТФ), необходимой для жизнедеятельности растения. В процессе дыхания образуются промежуточные соединения, которые используются для биосинтеза белков, жиров, фенольных соединений и др.

Органические вещества, разрушающиеся во время дыхания, называют дыхательным субстратом . Главным субстратом являются углеводы, причём в первую очередь – свободные сахара, если их количество в растении недостаточно, то окислению подвергаются запасные полимерные вещества – полисахариды и белки, а также жиры, но только после их гидролиза. Поли- и дисахариды гидролизуются до моносахаридов, жиры – до глицерина и жирных кислот, белки – до аминокислот. Запасные жиры расходуются на прорастание семян масличных культур (рапс, подсолнечник, лен). Окисление 1 грамма углеводов и белков высвобождает 17 кДж энергии, а жиров – 39 кДж.

Окисление дыхательных субстратов в ходе дыхания осуществляется с участием ферментов. Они называются оксидоредуктазами, так как окисление одного вещества (донора электронов и протонов) сопряжено с восстановлением другого вещества (акцептора).

Качественный показатель дыхания – дыхательный коэффициент (ДК) – это отношение объёма выделенного СО 2 к объему поглощённого О 2 . Он зависит от химической природы окисляемого вещества. Если субстратом являются углеводы – ДК=6/6=1 – 1 моль глюкозы окисляется с поглощением 6 молей О 2 , и при этом выделяется 6 молей СО 2 , что вытекает из суммарного уравнения дыхания:

С 6 Н 12 О 6 + 6О 2 → 6Н 2 О + 6СО 2

При полном окислении липидов, белков и других соединений с высокой степенью восстановленности – ДК меньше единицы (ДК=18/26=0,7):

С 18 Н 36 О 2 + 26О 2 → 18Н 2 О + 18СО 2

Это связано с тем, что количество кислорода, необходимое для окисления субстрата в процессе дыхания, находится в обратной зависимости от содержания его в молекуле субстрата: чем меньше атомов О 2 в молекуле субстрата, тем больше его тратится на окисление.

На более окисленных, чем углеводы, органических кислот требуется меньше кислорода, ДК – превышает единицу (ДК=8/5=1,6):

2С 4 Н 4 О 5 + 5О 2 → 4Н 2 О + 8СО 2

Однако на ДК влияют и другие факторы. Он возрастает со снижением влажности ткани и температуры окружающей среды, но уменьшается при механических повреждениях. Зависит ДК и от снабжения тканей кислородом. При его недостатке усиливается брожение и ДК возрастает.

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом).

В выяснении данного вопроса большое значение имеет определение дыхательного коэффициента. Дыхательный коэффициент (ДК) - это объемное или молярное отношение С02, выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени 02. При нормальном доступе кислорода величина ДК зависит от субстрата дыхания. Если в процессе дыхания используются углеводы, то процесс идет согласно уравнению С6Н1206 +602 -> 6С02 + 6Н20. В этом случае ДК равен единице: 6С02/602 = 1. Однако если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, ДК становится больше единицы. Так, если в качестве субстрата дыхания используется яблочная кислота, то ДК = 1,33. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и ДК становится меньше единицы. Так, при использовании жиров ДК = 0,7. Определение дыхательных коэффициентов разных тканей растений показывает, что в нормальных условиях он близок к единице. Это дает основание считать, что в первую очередь растение использует в качестве дыхательного материала углеводы. При недостатке углеводов могут быть использованы и другие субстраты. Особенно это проявляется на проростках, развивающихся из семян, в которых в качестве запасного питательного вещества содержатся жиры или белки. В этом случае дыхательный коэффициент становится меньше единицы. При использовании в качестве дыхательного материала жиров происходит их расщепление до глицерина и жирных кислот. Жирные кислоты могут быть превращены в углеводы через глиоксилатный цикл. Использованию белков в качестве субстрата дыхания предшествует их расщепление до аминокислот.

32. Анаэробное дыхание растений (гликолиз)

Начальный этап анаэробного распада углеводов заключается в образовании ряда фосфорных эфиров сахаров (гексоз). Гликолиз происходит в цитоплазме.

Гликолиз осуществляется во всех живых клетках организмов. В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты.

На первом этапе молекула глюкозы под действием фермента гексокиназы принимает остаток фосфорной кислоты от АТФ, которая превращается в АДФ, и в результате образуется глюкопиранозо-6-фосфат. Последний под действием фермента фосфогексоизомеразы (оксоизомеразы) превращается в фруктофуранозо-6-фосфат. На дальнейшем этапе гликолиза фруктофуранозо-6-фосфата происходит присоединение к нему еще одного остатка фосфорной кислоты. Источником энергии для образования этого эфира является также молекула АТФ. Эту реакцию катализирует фосфогексокиназа, активируемая ионами магния. В результате образуется фруктофуранозо-1,6-дифосфат и новая молекула аденозиндифосфата.

Следующий этап гликолиза заключается в окислении 3-фосфоглицеринового альдегида специфической дегидрогеназой и фосфорилировании глицериновой кислоты с использованием минеральной фосфорной кислоты. Образовавшаяся в результате этой реакции 1,3-дифосфоглицериновая кислота передает при участии фермента фосфоферазы один остаток фосфорной кислоты молекуле АДФ, которая превращается в АТФ, при этом образуется 3-фосфоглицериновая кислота. Последняя под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту, которая под влиянием фермента енолазы превращается в фосфоенолпировиноградную кислоту и наконец в пировиноградную кислоту.

Образованием пировиноградной кислоты из фосфоенолпирувата заканчивается гликолитическое расщепление гексозы по типу спиртового брожения.

Цикл Кребса

Вторая фаза дыхания - аэробная - локализована в митохондриях и требует присутствия кислорода. В аэробную фазу дыхания вступает пировиноградная кислота.

Процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировиноградной кислоты;

2) цикл трикарбоновых кислот (цикл Кребса);

3) заключительная стадия окисления - электронтранспортная цепь (ЭТЦ) требует обязательного присутствия 0 2 .

Первые две стадии происходят в матриксе митохондрий, электронтранспортная цепь локализована на внутренней мембране митохондрий.

Первая стадия - окислительное декарбоксилирование пировиноградной кислоты. Процесс этот состоит из ряда реакций и катализируется сложной мультиферментной системой пируватдекарбоксилазой. Пируватдекарбоксилаза включает в себя три фермента и пять коферментов (тиаминпирофосфат, липоевая кислота, коэнзим А - KoA-SH, ФАД и НАД). В результате этого процесса образуется активный ацетат - ацетилкоэнзим А (ацетил-КоА), восстановленный НАД (НАДН + Н+), и выделяется углекислый газ (первая молекула). Восстановленный НАД поступает в цепь переноса электронов, а ацетил-КоА вступает в цикл трикарбоновых кислот.

Вторая стадия - цикл трикарбоновых кислот (цикл Кребса). В 1935 г. венгерский ученый А. Сент-Дьердьи установил, что добавление небольших количеств органических кислот (фумаровой, яблочной или янтарной) усиливает поглощение кислорода измельченными тканями. Продолжая эти исследования, Г. Кребс пришел к выводу, что главным путем окисления углеводов являются циклические реакции, в которых происходит постепенное преобразование ряда органических кислот. Эти преобразования и были названы циклом трикарбоновых кислот или циклом Кребса. Сам исследователь за эти работы в 1953 г. был удостоен Нобелевской премии.

Суть цикла в декарбоксилировании пировиноградной кислоты.

В цикл вступает активный ацетат, или ацетил-КоА. Сущность реакций, входящих в цикл, состоит в том, что ацетил-КоА конденсируется с щавелевоуксусной кислотой (ЩУК). Далее превращение идет через ряд ди- и трикарбоновых органических кислот. В результате ЩУК регенерирует в прежнем виде. В процессе цикла присоединяются три молекулы Н 2 0, выделяются две молекулы С0 2 и четыре пары водорода, которые восстанавливают соответствующие коферменты (ФАД и НАД).

Ацетил-КоА, конденсируясь с ЩУК, дает лимонную кислоту, при этом КоА выделяется в прежнем виде. Этот процесс катализируется ферментом цитратсинтазой. Лимонная кислота превращается в изолимонную. На следующем этапе происходит окисление изолимонной кислоты, реакция катализируется ферментом изоцитратдегидрогеназой. При этом протоны и электроны переносятся на НАД (образуется НАДН + Н+). Для протекания этой реакции требуются ионы магния или марганца. Одновременно происходит процесс декарбоксилирования. За счет одного из атомов углерода, вступившего в цикл Кребса, первая молекула С0 2 вьделяется. Образовавшаяся а-кетоглутаровая кислота подвергается окислительному декарбоксилированию. Этот процесс также катализируется мультиферментным комплексом кетоглутаратдегидрогеназой. В результате за счет второго атома углерода, вступившего в цикл, выделяется вторая молекула С0 2 . Одновременно происходит восстановление еще одной молекулы НАД до НАДН и образуется сукцинил-КоА.

На следующем этапе сукцинил-КоА расщепляется на янтарную кислоту (сукцинат) и HS-КоА. Выделяющаяся при этом энергия накапливается в макроэргической фосфатной связи АТФ. Образовавшаяся янтарная кислота окисляется до фумаровой кислоты. Реакция катализируется ферментом сукцинатдегидрогеназой. Одновременно выделяется третья пара водородов, образуя ФАД-Н 2 .

На следующем этапе фумаровая кислота, присоединяя молекулу воды, превращается в яблочную кислоту с помощью фермента фумаратдегидрогеназы. На последнем этапе цикла яблочная кислота окисляется до ЩУК.

С каждым этапом цикла исчезает одна молекула пировиноградной кислоты, и от разных компонентов цикла отщепляются 3 молекулы С0 2 и 5 пар атомов водорода электронов.

Разновидностью цикла Кребса является глиоксилатный цикл. В качестве источника углеводов выступают двухуглеродные соединения, например ацетат, и участвует глиоксиловая кислота. Р-ции глиоксилатного цикла лежат в основе превращения запасного жира в углеводы. Ферменты этого цикла находятся в тельцах клетки – глиоксисомах.

В глиоксилатном цикле в отличие от цикла Кребса изолимонная кислота распадается на янтарнуюи глиоксиловую кислоты. . Глиоксилат с участием малатсинтазы взаимодействует со второй молекулой ацетил-Co А, в результате чего синтезируется яблочная кислота, которая окисляется до ЩУК.

В отличие от цикла Кребса в глиоксилатном цикле в каждом обороте участвует не одна, а две молекулы ацетил-СоА и этот активированный ацетил используется не для окисления, а для синтеза янтарной кислоты. Янтарная кислота выходит из глиоксисом, превращается в ЩУК и участвует, в глюконеогенезе (обращенном гликолизе) и других процессах биосинтеза. Глиоксилатный цикл, позволяет утилизировать запасные жиры, при распаде которых образуются молекулы ацетил-СоА. Кроме того, на каждые две молекулы ацетил-СоА в глиоксилатном цикле.

Физиологический смысл глиоксилатного цикла состоят в дополнительном пути разложения жиров и образовании ряда разнообразных промежуточных соединений, играющих важную роль в биохимических реакциях.

Энергетика цикла Кребса

Цикл Кребса. играет чрезвычайно важную роль в обмене веществ растительного организма. Он служит конечным этапом окисления не только углеводов, но также белков, жиров и других соединений. В ходе реакций цикла освобождается основное количество энергии, содержащейся в окисляемом субстрате, причем большая часть этой энергии не теряется для организма, а утилизируется при образовании высокоэнергетических конечных фосфатных связей АТФ.

В аэробной фазе дыхания при окислении пировиноградной кислоты образуются 4 молекулы НАДН + Н+. Их окисление в дыхательной цепи приводит к образованию 12 АТФ. Кроме того, в цикле Кребса восстанавливается одна молекула флавиновой дегидрогеназы (ФАДН2). Окисление этого соединения R в дыхательной цепи приводит к образованию 2 АТФ, поскольку одно фосфори-лирование не происходит. При окислении молекулы а-кетоглутаровой кислоты до янтарной кислоты энергия непосредственно накапливается в одной молекуле АТФ (субстратное фосфорилирование). Таким образом, окисление одной молекулы пировиноградной кислоты сопровождается образованием ЗС02 и 15 молекул АТФ. Однако при распаде молекулы глюкозы получается две молекулы пировиноградной кислоты.

Ответить


Другие вопросы из категории

19. Дизентерийной амёбой человек может заразиться, если 2) он погладит собаку 3) его укусит комар 4) он съест плохо проваренное

5) он выпьет воду из загрязненного водоема

20. Морфологический критерий вида – это

1) его область распространения

2) особенности процессов жизнедеятельности

3) особенности внешнего и внутреннего строения

4) определенный набор хромосом и генов

21. Темные бабочки встречаются в промышленных районах Англии чаще, чем светлые, потому что

1) в промышленных районах темные бабочки откладывают больше яиц, чем светлые

2) темные бабочки более устойчивы к загрязнениям

3) вследствие загрязнения некоторые бабочки становятся темнее других

4) в загрязненных районах темные бабочки менее заметны для насекомоядных птиц

22. Палеонтологическим доказательством эволюции служит

2) отпечаток археоптерикса

3) видовое разнообразие организмов

4) приспособленность рыб к жизни на разных глубинах

5) наличие раковины у моллюсков

1) снабженный ресничками

2) состоящий из хитина

3) на который не действует пищеварительный сок

4) защищенный от воздействий среды тонким слоем воска

24. Укажите абиотический фактор, необходимый для жизни растений

2) наличие углекислого газа в атмосфере

3) внесение человеком минеральных удобрений

4) наличие в экосистеме консументов

5) конкуренция за свет

25. Взаимоотношение божьих коровок и тлей – пример

3) взаимопомощи

4) симбиоза

5) хищничества

26. Разнообразное воздействие человека на природу относят к факторам

2) абиотическим

3) биотическим

4) ограничивающим

5) антропогенным

27. В клетках животных липиды синтезируются в

2) рибосомах

3) лизосомах

28. В клетке расщепление белков до аминокислот с участием ферментов происходит в

2) митохондриях

3) лизосомах

4) комплексе Гольджи

5) ядрышках

29. В профазе митоза НЕ происходит

2) растворение ядерной оболочки

3) формирование веретена деления

4) удвоение ДНК

5) растворение ядрышек

30. Причина модификационной изменчивости признаков – изменение

3) условий среды

4) хромосом

5) генотипа

31. В селекции растений чистые линии получают путём

2) перекрестного опыления

3) самоопыления

4) экспериментального мутагенеза

5) межвидовой гибридизации

32. Для питания грибы – сапротрофы используют

2) азот воздуха

3) углекислый газ и кислород

4) органические вещества отмерших тел

5) органические вещества, которые создают сами в процессе фотосинтеза

33. Если в пробирку с кровью добавить 2%-ный раствор поваренной соли, то эритроциты

2) набухнут и лопнут

3) не изменят своей формы

4) сморщатся и осядут на дно

5) всплывут на поверхность

35. Движущий отбор способствует сохранению особей с признаком,

1) отличающимся от прежней нормы реакции

2) имеющим среднюю величину нормы реакции

3) который не изменяется в течение ряда поколений

4) обеспечивающим выживание популяции в стандартных условиях

36. Верны ли следующие суждения об отличии природной экосистемы от агроэкосистемы?

А. В круговороте веществ природной экосистемы, в отличие от агроэкосистемы, наряду с солнечной э участвует дополнительный источник энергии в виде удобрений.

Б. Агроэкосистемы, в отличие от природных экосистем, характеризуются целостностью, устойчивостью и саморегуляцией.

2) Верно только А

3) Верно только Б

4) Верны оба суждения

5) Оба суждения неверны

Читайте также

1. Какие вещества не относятся к органическим:

a. Белки
b. минеральные соли
c. углеводы
d. жиры
2. Кому обязана своим появлением стройная система классификации растительного и животного мира:
a. Жан Батист Ламарк
b. Карл Линней
c. Чарлз Дарвин

3. Какое оплодотворение у наземных животных:
a. Наружное
b. Внутреннее
c. Двойное

4. До каких промежуточных продуктов распадаются белки в пищеварительном тракте:
a. глицерин и жирные кислоты
b. простые углеводы
c. аминокислоты

5. Сколько хромосом содержится в половых гаметах человека:
a. 23
b. 46
c. 92
6. Какова функция хлоропластов
a. Синтез белка
b. Синтез АТФ
c. Синтез глюкозы
7. Клетки у которых есть ядро относятся к:
a. Эукариотическая клетка
b. Прокариотическая клетка
8. Организмы, создающие органические вещества в экосистеме:
a. Консументы
b. Продуценты
c. Редуценты
9. Какой клеточный органоид отвечает за выработку энергии в клетке:
a. Ядро
b. Хлоропласт
c. Митохондрия

10. Какие органоиды характерны только для растительных клеток
a. Эндоплазматическая сеть
b. Пластиды
c. Рибосомы

11. Сколько хромосом содержится в соматических клетках человека
a. 23
b. 46
c. 92
12. Какое оплодотворение у покрытосеменных растений:
a. Внутреннее

Здравствуйте! Помогите пожалуйста!!!

Контрольная по биологии...
1) Укажите группу химических элементов,содержание которых в клетке составляет в сумме 98%
а) H,O,S,P; б)H,C,O,N; в) N,P,H,O; г) C,H,K,Fe
2) Какие связи стабилизируют вторичную структуру белков?
а) ковалентные, б) ионные, в) водородные, г) такие связи отсутствуют
3) Назовите химическое соединение,которое имеется в ДНК,но отсутствует в РНК
а) тимин, б) дизоксирибоза, в) рибоза, г) гуанин
4)Из жирных кислот и глицерина состоят молекулы
а) углеводов, б) белков, в) нуклеиновых кислот, г) липидов
5) В каком ответе все названные углеводы относят к полисахаридам?
а) глюкоза, галактоза,рибоза, в) лактоза,галактоза,фруктоза
6) Назовите белок,выполняющий в основном двигательную функцию
а) актин, б) кератин, в) липаза, г) фибрин
7) Назовите вещество, относящееся к липидам
а) клетчатка, б) АТФ, в) холестерин, г) коллаген
8) Клеточной теории не соответствует положение:
а) "клетка- элементарная единица жизни"
б) " клетки многоклеточных организмов объединены в ткани по сходству строения и функций"
в) " клетки образуются путём слияния яйцеклетки и сперматозоида"
г)" клетки всех живых существ сходны по строению и функциям"
9) Из каких веществ состоит биологическая мембрана:
а) из липидов и белков, б) из белков и углеводов, в) из углеводов и воды
10) Какой из компонентов мембраны обусловляет свойство избирательной проницаемости:
а) липиды, б) белки
11) Где образуются субъединицы рибосом:
а) в ядре, б) в цитоплазме, в) в вакуолях, г) в ЭПС
12) Какую функцию выполняют рибосомы:
а) синтез белков, б) фотосинтез, в) синтез жиров, г) транспортная функция
13) Какое строение имеют митохондрии:
а) одномембранное, б) двухмембранное, в) немембранное
14) Какие органеллы являются общими для растительной и животной клетки:
а) рибосомы, б) ЭПС, в) пластиды, г) митохондрии
15) Какие пластиды содержат пигмент хлорофилл:
а) хлоропласты, б) лейкопласты, в) хромопласты
16) Какие органеллы цитоплазмы имеют немембранное строение:
а) ЭПС, б) митохондрии, в) пластиды, г) рибосомы, д) лизосомы
17) В какой части ядра находятся молекулы ДНК:
а) в ядерном соке, б) в ядерной оболочке, в) в хромосомах
18) Какая из ядерных структур принимает участие в сборке субъединиц рибосом:
а) ядерная оболочка, б) ядрышко, в) ядерный сок
19) Назовите формулу молекулы ДНК прокариот,по которой она отличается от ядерной ДНК эукариот
а) кольцо, б) линейная структура, в) разветвлённая структура
20) Представители какой систематической группы организмов проявляют характерные для живой природы признаки,только находясь в другом живом организме?
а) вирусы, б) прокариоты, в) эукариоты

Задание 2. Дайте ответ на вопрос.

У каких организмов генетической аппарат образован кольцевой ДНК?
" Сердце" какого организма состоит из фрагмента нуклеиновой кислоты?
Второе название доядерных организмов? Какое вещество образует клеточную стенку грибов?
Органоид клетки, в котором синтезируется АТФ?
Название опорной системы цитоплазмы?
Органоид клетки являющийся её пищеварительным центром?Название процесса при котором происходит удаление веществ из клетки? Название зелёных пластид? Чем состав нуклеотидов ДНК отличен от нуклеотидов РНК?

Задание 3.

Укажите порядок нуклеотидов в цепочке ДНК,образующейся путём самокопирования цепочки,определите число водородный связей:
Т-А-Г-Ц-Т-Т-А-Г-Г-Ц-Ц-А.....

Дыхание растений
План лекции

1. Общая характеристика процесса дыхания.

2. Строение и функции митохондрий.

3. Структура и функции аденилатной системы.

4. Субстраты дыхания и дыхательный коэффициент.

5. Пути дыхательного обмена

1. Общая характеристика процесса дыхания.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается, - это дыхание и брожение .

Дыхание – это окислительно-восстановительный процесс в результате которого углеводы окисляются до углекислого газа, кислород восстанавливается до воды, а выделившаяся энергия преобразуется в энергию связей АТФ.

Брожение – это анаэробный процесс распада сложных органических соединений на более простые органические вещества, также сопровождаемый выделением энергии. При брожении степень окисления соединений, принимающих в нем участие, не меняется. В случае дыхания акцептором электрона служит кислород, в случае брожения – органические соединения.

Чаще всего реакции дыхательного обмена рассматривают на примере окислительного распада углеводов.

Суммарное уравнение реакции окисления углеводов при дыхании можно представить следующим образом:

С6 Н12 О6 + 6О2 → 6СО2 + 6 Н2 О + ~ 2874 кДж

2. Строение и функции митохондрий.

Митохондрии – цитоплазматические органеллы, которые являются центрами внутриклеточного окисления (дыхания). Они содержат ферменты цикла Кребса, дыхательной цепи переноса электронов, окислительного фосфорилирования и многие другие.

Митохондрии на 2/3 состоят из белка и на 1/3 из липидов, среди которых половина приходится на фосфолипиды.

Функции митохондрий:

1. Осуществляют химические реакции, являющиеся источником электронов.

2. Переносят электроны по цепи компонентов, синтезирующих АТФ.

3. Катализируют синтетические реакции, идущие с использованием энергии АТФ.

4. Регулируют биохимические процессы в цитоплазме.

3. Структура и функции аденилатной системы.

Обмен веществ, происходящий в живых организмах, состоит из множества реакций, идущих как с потреблением энергии, так и с ее выделением. В некоторых случаях эти реакции взаимосвязаны. Однако чаще всего процессы, в которых энергия выделяется, отделены в пространстве и во времени от тех, в которых она потребляется. В связи с этим у всех живых организмов выработались механизмы хранения энергии в форме соединений, обладающих макроэргическими (богатыми энергией) связями. Центральное место в энергообмене клеток всех типов принадлежит аденилатной системе. Эта система включает аденозинтрифосфорную кислоту (АТФ), аденозиндифосфорную кислоту (АДФ), - 5-монофосфат аденозина (АМФ), неорганический фосфат (Р i ) и ионы магния.

4. Субстраты дыхания и дыхательный коэффициент

Вопрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И.П. Бородина (1876) было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именно углеводы являются основным веществом, потребляемым при дыхании (субстратом). В выяснении этого вопроса большое значение имеет определение дыхательного коэффициента.

Дыхательный коэффициент (ДК) – это объемное или молярное отношение углекислого газа (СО2), выделившегося в процессе дыхания, к поглощенному за этот же промежуток времени кислороду (О2). Дыхательный коэффициент показывает, за счет каких продуктов осуществляется дыхание.

В качестве дыхательного материала в растениях, кроме углеводов, могут использоваться жиры, белки и аминокислоты, органические кислоты.

5. Пути дыхательного обмена

Необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена.

Существуют два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) Гликолиз + цикл Кребса (гликолитический)

2) пентозофосфатный (апотомический)

Гликолитический путь дыхательного обмена

Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз.

Первая фаза – анаэробная (гликолиз), локализована в цитоплазме.

Вторая фаза – аэробная , локализована в митохондриях.

В процессе гликолиза происходит преобразование молекулы гексозы до двух молекул пировиноградной кислоты (ПВК):

С6 Н12 О6 → 2 С3 Н4 О3 + 2Н2

Вторая фаза дыхания – аэробная - требует присутствия кислорода. В эту фазу вступает пировиноградная кислота. Общее уравнение этого процесса можно представить так:

2ПВК + 5 О2 + Н2 О → 6СО2 + 5Н2 О

Энергетический баланс процесса дыхания.

В результате гликолиза глюкоза распадается на две молекулы ПВК и накапливаются две молекулы АТФ, также образуются две молекулы НАДН2, вступая в ЭТЦ дыхания они высвобождают шесть молекул АТФ. В аэробной фазе дыхания образуется 30 молекул АТФ.

Таким образом: 2АТФ + 6 АТФ + 30 АТФ = 38 АТФ

Пентозофосфатный путь дыхательного обмена

Существует еще не менее распространенный путь окисления глюкозы – пентозофосфатный. Это анаэробное окисление глюкозы, которое сопровождается выделением углекислого газа СО2 и образованием молекул НАДФН2 .

Цикл состоит из 12 реакций, в которых участвуют только фосфорные эфиры сахаров.

Дыхательным коэффициентом называется отно­шение выделенной при дыхании углекислоты к количеству погло­щенного кислорода (СО2/О2). В случае классического дыхания, когда окисляются углеводы СбН^О^ и в качестве конечных про­дуктов образуются только СО2 и Н2О, дыхательный коэффициент равен единице. Однако так бывает далеко не всегда, в ряде случаев он изменяется в сторону увеличения или уменьшения, почему и считают, что он является показателем продуктивности дыхания. Изменчивость величины дыхательного коэффициента зависит от субстрата дыхания (окисляемого вещества) и от продук­тов дыхания (полного или неполного окисления).

При использовании в процессе дыхания вместо углеводов жи­ров, которые менее окислены, чем углеводы, на их окисление будет использоваться больше кислорода - в таком случае дыха­тельный коэффициент будет уменьшаться (до величины 0,6 - 0,7). Этим объясняется большая калорийность жиров по сравнению с углеводами.

Если же при дыхании будут окисляться органические кислоты (вещества более окисленные по сравнению с углеводами), то кис­лорода будет использоваться меньше, чем выделяться углекислоты, и дыхательный коэффициент возрастает до величины больше еди­ницы. Самым высоким (равным 4) он будет при дыхании за счет.щавелевой кислоты, которая окисляется по уравнению

2 С2Н2О4 + 02 4С02 + 2Н20.

Выше было упомянуто, что при полном окислении субстрата (углевода) до углекислого газа и воды дыхательный коэффициент равен единице. Но при неполном окислении и частичном образо­вании продуктов полураспада часть углерода будет оставаться в растении, не образуя углекислого газа; кислорода будет поглощать­ся больше, и дыхательный коэффициент опустится до величины меньше единицы.

Таким образом, определяя дыхательный коэффициент, можно получить представление о качественной направленности дыхания, о субстратах и продуктах этого процесса.

Зависимость дыхания от экологических факторов.

Дыхание и температура

Как и другие физиологические процессы, интенсивность дыха­ния зависит от ряда экологических факторов, причем сильнее и

определеннее всего выражена температурная зависимость. Это обусловлено тем, что из всех физиологических процессов дыхание является наиболее "химическим", ферментативным. Связь же ак- , тивности ферментов с уровнем температуры неоспорима. Дыхание подчиняется правилу Вант-Гоффа и имеет температурный коэф­фициент (2ю 1,9 - 2,5.

Температурная зависимость дыхания выражается одновершин­ной кривой (биологической) с тремя кардинальными точками. Точ­ка (зона) минимума различна у разных растений. У холодоустойчивых она определяется температурой замерзания рас­тительной ткани, так что у незамерзающих частей хвойных ды­хание обнаруживается при температуре до -25 °С. У теплолюбивых растений точка минимума лежит выше нуля и оп­ределяется температурой отмирания растений. Точка (зона) опти­мума дыхания лежит в интервале от 25 до 35 °С, т. е. несколько выше, чем оптимум для фотосинтеза. У различных по степени теплолюбивости растений ее положение также несколько изменя­ется: она лежит выше у теплолюбивых и ниже у холодоустойчивых. Максимальная температура дыхания находится в интервале от 45 до 53 °С.> Эта точка определяется отмиранием клеток и разруше­нием цитоплазмы, ибо клетка дышит, пока жива. Таким образом, температурная кривая дыхания подобна кривой фотосинтеза, но не повторяет ее. Различие между ними заключается в том, что- кривая дыхания охватывает более широкий температурный диапа­зон, чем кривая фотосинтеза, а оптимум ее несколько смещен в сторону повышенйой температуры.

Сильное действие на интенсивность дыхания оказывают коле­бания температуры. Резкие переходы ее от высокой к низкой и обратно значительно усиливают дыхание, что было, установлено* еще В. И. Палладиным в 1899 г.

При колебаниях температуры происходят не только количест­венные, но и качественные изменения дыхания, т. е. изменение путей окисления органического вещества, однако в настоящее вре­мя они исследованьг слабо, поэтому здесь не излагаются.